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Control of Boundary Layer Flow Transition via Distributed 
Reduced-Order Controller 

Keun H y o u n g  Lee* 

Department o f  Mechanical & Aerospace Engineering, University o f  California, 
Los Angeles, California 90095, USA 

A reduced-order linear feedback controller, which is used to control the linear disturbance in 

two-dimensional plane Poiseuille flow, is applied to a boundary layer flow for stability control. 

Using model reduction and linear-quadratic-Gaussian/loop-transfer-recovery control synthe- 

sis, a distributed controller is designed from the linearized two-dimensional Navier-Stokes 

equations. This reduced-order controller, requiring only the wall-shear information, is shown 

to effectively suppress the linear disturbance in boundary layer flow under the uncertainty of 

Reynolds number. The controller also suppresses the nonlinear disturbance in the boundary 

layer flow, which would lead to unstable flow regime without control. The flow is relaminarized 

in the long run. Other effects of the controller on the flow are also discussed. 
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g Forcing term in Navier-Stokes 
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h half channel height 
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4 th order operator tbr linear term 

Horizontal length 

Kalman gain matrix 

4 th order operator for nonlinear term 

Matrix associated with cost criterion, (]a r 

D. 
Pressure 

Conditional error variance 

Matrix associated with cost criterion, ~ r  

Co 
• Matrix associated with cost criterion, D~ 

Do + F~F~ 
: Real part of complex number 

: Reynolds number based on half channel 

height 

Re, .  : Reynolds number based on displacement 

thickness 

So : Solution of algebraic Riccati equation 

t : time 

U : Mean velocity in Poiseuille flow 

UB : Blasius mean velocity 

u Z Input vector 

u : Disturbance velocity 

z~ (y) : Eigenfunction of Orr-Sommerfeld solution 

: Intermediate velocity 

vw : Blowing/suction at wall 
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V,W 
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X, y 
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z,  
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Z. 

: Power spectral density of v and w 

; White Gaussian noise associated with 

LQG 

State-space vector 

; Reduced-order state space vector 

: Conditional mean estimate of 

Physical coordinate 

Height of physical domain of boun- 

dary layer flow 

; Measurement history 

; Output vector 

Wall-shear measurement 

: Wavenumber 

at, fl~, ~'t, Pt : Coefficients associated with RK3 

/3, p 
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CO 

Superscript 

Subscripts 
i , j  

• Tuning parameter for LQG/LTR 

Input matrix associated with LQG 

problem 

; Combination of Chebyshev poly- 

nomial 

Laplacian operator 

Displacement thickness 

Kronecker delta function 

Cost criterion 

Streamfunction 

Height of computational domain of 

boundary layer flow 

Pseudo pressure 

: Parameter to determine the grid 

concentration 

Kinematic viscosity 

Filter residual 

Eigenvalue of Orr-Sommerfeld so- 

lution 

Time step 

~ lndex representing horizontal and 

wall-normal direction (=1,  2) 

: Wavenumber index 

: RK substep ( = i ,  2, 3) 

I. Introduction 

Increasing attention has been given to the con- 

trol of transitional flows in a variety range of 

structures such as nozzles, engine inlet/outlets, 

automobiles, submarines, airplanes over the last 

decade. Turbulent boundary layers have a high 

wall-shear stress compared to laminar flows. 

Therefore, a suppression or delay of transition 

can reduce the viscous drag acting on the surface 

of structures, leading to improve the efficiency 

of these configurations. Various methodologies 

and overviews on the control of flow were given 

by Gad-e i -Hak (1989) and Gad-eI-Hak and 

Bushnell (1991). 

A variety of techniques and theories (Gad- 

el-Hak, 1989; 1994 Gad-e l -Hak and Bushnell, 

1991 ; Modi, 1997 ; Reed et al., 1996 ; Choi et al., 

1993 ; 1994 ; Akhavan et al., 1993 ; Berger et al., 

1997 ; Bewley and Moin, 1994 ; Lee et al., 1997 ; 

Koumoutsakos, 1999 ; Joshi et al., 1995 ; 1997 ; 

1999; Bewley and Liu, 1998; Cortelezzi and 

Speyer, 1998 ; Cortelezzi et al., 1998 ; Lee et al., 

2001: Lee, 1999; Lim and Kim, 2000) were 

attempted with partial success to control near- 

wall turbulence for drag reduction or transition 

delay. Over the past two decades, tools of desi- 

gning distributed controller, which is thought to 

be more suitable in analyzing and controlling 

fluid flow, have been developed in the control/  

automation society (Zhou et al., 1996; Bryson 

and Ho, 1969; Kwakernaak and Silvan, 1969; 

Doyle and Stein, 1981 ; Rhee and Speyer, 1991). 

With the aid of these tools, a linear optimal con- 

troller was shown to reduce the viscous drag even 

in turbulent channel flows, (Lee et al., 2001 ; Lee, 

1999) which is naturally nonlinear. The reason a 

linear controller works even in a turbulent flow 

was partially addressed by Kim and Lim (2000). 

Mult i - input /mult i -output  (MIMO) linear qua- 

dratic Gaussian (LQG) synthesis, or, in modern 

term/-/2 synthesis, combined with modern model 

reduction technique was used to design an op- 

timal and robust linear controller for suppressing 

near-wall disturbances leading to transition in 

a two-dimensional laminar channel flow (Cor- 

telezzi and Speyer, 1998). 

The distributed robust linear controller based 

on two-dimensional linearized Navier-Stokes eq- 

uations was shown to efficiently suppress finite 

near-wall disturbance in a two-dimensional chan- 

nel (Cortelezzi et al., 1998) and near wall turbu- 
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lence in a fully developed turbulent channel flow. 

(Lee et al., 2001) In particular, the fact that the 

distributed robust linear controller remarkably 

well suppressed near-wall turbulence in a turbu- 

lent flow opens another possibility of being able 

to be used in other various flows since it works 

even in the different basic plant rather than the 

plane Poiseuille flow, from which the controller is 

designed. This paper demonstrates that this can 

be successfully applied to control disturbance 

wall-shear stress in two-dimensional boundary 

layer flows. 

In section 2, we derive the state-space equa- 

tions from the linearized two-dimensional Na- 

vier-Stokes equations, reduce those order, and 

design a reduced-order two-dimensional linear 

controller by using l inear-quadratic-Gaussian 

(LQG)/loop-transfer-recovery (LTR). In sec- 

tion 3, we present a numerical method. In sec- 

tion 4, we demonstrate how well the distributed 

linear robust controller can suppress disturbance 

wall-shear stress in linear and nonlinear boun- 

dary layer flows, followed by the conclusion. 

In this paper, we use (u, v) to represent the 

velocity components in the streamwise (x) and 

wall-normal (y) directions, respectively, and (t) 

for the time. 

2. Controller Design 

In this section, we describe how the state-space 

equations are derived and the distributed linear 

controller is designed. To obtain the state-space 

equations as a basic model, we consider the two- 

dimensional linearized Navier-Stokes (N-S) equa- 

tions in a plane Poiseuille flow, given in Fig. 1. 

The linearized N-S equations in terms of the 

I "  / ~ = 4 n  ,,I _ _  

Fig. I Poiseuille channel flow configuration for the 
basis of controller design. Uc is the centerline 
velocity 

disturbance streamfunction, ~'(x, y, t),  are writ- 

ten as 

( ~t + U~ff )A~ d2Udy 2 8~z_ Re ~ ( t  (1) 

where A is the Laplacian operator. All the quan- 

tities are normalized by the channel half-height h 

and the centerline velocity Uc and U is an undis- 

turbed velocity profile, 1--y 2. Reynolds number 

Re is defined as Uch where v is a kinematic /J 
viscosity. Considering blowing/suction only at 

the bottom wall as control input, the boundary 

conditions for !k are 

8!k (x, y = -- I, t) = -- Vw (2) 8x 

O~(x, y = l ,  t) = lk (x ,  y : ± l ,  t ) : 0  (3) 8x 

The disturbance wall-shear stress as output 

measurement is expressed as 

8u ,~(X, t ) = ~ - -  y=--l-- 02¢ y=-I = 0  (4) ay ~ 

An optimal performance index is essential in 

the LQG (Ha) control design. We set a perform- 

ance index such that both the near-wall disturb- 

ance and the controller cost are minimized. 

Knowing that the system can be operated away 

from the region, where a linear assumption holds, 

due to large control input, the controller cost is 

included in the performance index. Even though 

it is recommended to minimize the disturbance 

energy for the control of a system, it is very 

difficult to assess the energy that drives the system 

in many engineering problems. Because of the 

high correlation between the near-wall disturb- 

ance and the disturbance wall-shear stress, the 

disturbance wall-shear stress rather than the dis- 

turbance energy, instead, is included in defining 

the optimal performance index. The performance 

index is written as follows : 

~=lim,,.: Jt .So L\ Oy w +V2w dxdt (5) 

In order to obtain the state-space model from 

the partial differential equation with the boun- 

dary conditions and the output measurement, 

Eqs. (1-4), first, we decomposed all flow vari- 
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ables spectrally by using periodic functions in the 

streamwise direction and Chebyshev polynomials 

in the wall-normal direction as 

N M 

#(x, y, t)= 52. Y, [a,,(t)cos(a,x) +b,,(t)sin(a,x)]Fm(y) 
.=, m=~ (6) 5' 

+ 2 [p.(t) cos(a.x) +q,(t)sin(a.x)]f(y) 
n=l 

where a~=2zJLx.  Functions Fm and f are the 

linear combinations of Chebyshev polynomials 

such that they satisfy the homogeneous boundary 

conditions and the gi,en boundary conditions, 

Eqs. (2-3), respectively. The measurement equa- 

tion, z, can be expanded as 

N 

z =  E[c , ( t ) cos (a ,x )  +d,(t)sin(a~x) ] (7) 
r t = l  

Second, we employed Galerkin projection and 

matrix transformation to reach the final form of 

the state-space variable (Lee et al., 2001; Lee, 

1999): 

d x  = A x + B u ,  z = C x + D u  (8) 
dt 

where vectors x, u, and z represent the internal 

state, the control, and the measurement vectors, 

respectively. Note that matrices A, B, and C 

represent the dynamics of a plane Poiseuille flow, 

actuators, and sensors, respectively, while matrix 

D contains the direct coupling between sensors 

and actuators. The performance index, Eq. (5), 

can also be represented by 

~ = l i m  f t t~[zrz+urFrFu]dxdt  (9) 
t y ~  

where the superscript T denotes a transposed 

quantity. The matrix 1 ~ is obtained by spectrally 

decomposing the last term in the cost criterion, 

Eq. (5). 
Since the linearized N-S equations are consi- 

dered in this derivation, the system equation can 

be decomposed into N independent state-space 

subsystems (Cortelezzi and Speyer, 1998; Cor- 

telezzi et al., 1998; Lee et al., 2001 ; Lee, 1999) 

Each individual state-space subsystem for a given 

wavenumber, a, is 

d x ~ - - A ~ x ~ + B ~ u ~ ,  z~=C~x~÷D~u~  (10) 
dt 

with initial condition xa (0 ) :xa0 .  Vectors xa, 

u~, and z~ represent the internal, the control, and 

the output vectors for a given wavenumber a, 

respectively. Similarly, the characteristics of the 

linear system makes the cost functional, Eq. (9) 

which though contains quadratic terms, repres- 

ented by a sum of N independent wavenumber 

cost functional, ~ .  The cost functional for a 

given wavenumber a is written as follows : 

3 ~ = l i m  f ' "  [ z J z . + u J F J F ~ u ~ ] d x d t  (11) 
t f~00 J t 

Therefore, because of the independence of Eqs. 

(6-7) with respect to the wavenumber, the design 

of an optimal and robust controller for the sys- 

tem, Eq. (8), with Eq. (9) renders to the N in- 

dependent robust single-wavenumber controller 

designs for the subsystem, Eq. (10), with its cor- 

responding cost functional, Eq. (11). 

Low-order controllers are usually preferred to 

high-order controllers since there are fewer things 

to have something wrong in hardware or bugs 

in software for the former than for the latter. 

Low-order controllers require lower cost of hard- 

ware construction as well as less computation 

time than high-order ones do. In order to con- 

struct the low-order controller, we first reduced 

the order of the system and designed a robust 

linear controller for the reduced-order model. 

For the reduced-order model, we transformed 

individual state-space subsystem, Eq. (10), into a 

Jordan Canonical form. From the transformed 

Ba and Ca, the states that are equally well-con- 

trollable and-observable are chosen to constitute 

a reduced-order model, whose dynamics is re- 

presented by fika, i ~ ,  Ca, and Da. That is, 

d : ~  = ~ , ~ ,  ]~u~,  ~ = ~ + D ~ u ~  (12) 
dt 

where ~a is the reduced-order internal state vec- 

tor and 2a is the measurement vector expressed in 

terms of ~a. Similarly, we define a cost functional 

of the reduced-order model for a given waven- 

umber as follows : 

5o=1}m f'" E oT .o+uoTrVrouo?dxdt (131 

For the design of rigorous controllers for N 

independent reduced-order models, we prefer 

LQG (H2) synthesis for this study eventhough a 
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rigorous mathematical framework for the design 

of disturbance attenuation (H~,) linear control- 

lers is available in the control synthesis theory. 

(Zhou et al., 1996) A brief review on LQG (H2) 

synthesis of a particular wavenumber will be 

given in a self-contained manner. 

The LQG problem as a stochastic optimal con- 

trol problem is formulated by 

~, = 0 . 1 ~  +D~u.  +v~ (15) 

where/-'a is an input matrix, w~ and v~ are both 

white Gaussian noise processes with zero means 

and auto-correlation functions 

E [ w ~  (t) w~r (r) ] = W ~ ( t -  r) 
(16) 

EEva (t) vr  ( r) ] = V ~ 8 ( t -  r) 

where E ~'] is the expectation operator averaging 

over all underlying random variables and a ( t -  

r) is the delta function. Note that W~ and V~, 

the power spectral densities, will be chosen here 

as design parameters to enhance system perform- 

ance. Additional comments on the controller de- 

sign process will be given at the end of this 

section. 

The LQG controller is determined by finding 

the control action u~(Zt) ,  where Z t = { z ( r )  ; 
0-< r <  t } is the measurement history, which mini- 

mizes the cost criterion 

].= l!m /I--~/E If"(i:rQ.i. + 2~]N.,. + fl]R.~l.)dr](l 7) 

subject to the stochastic dynamic system model 

Eqs. (15-16). Note that, from Eqs. (12-13), Q a =  
~r~a ,  N ~ = ~ r D ~ ,  and R~=D~rD~+FrF~.  The 

division by ( l : - - t )  ensures that the cost criterion 

remains finite in the presence of uncertainties in 

the infinite-time problem (l:---~c~). Note that 

Eq. (17) can include Eq. (13) where 

: . : ! !m,  /18/ 

and the limit in Eq. (13) is explicitly denoted in 

Eq. (18). Note that even though the time interval 

is infinite, time response is still measured by the 

eigenvalues of the closed-loop system. We con- 

sider the infinite-time problem with a time-in- 

variant dynamics because the controller gains 

become constants. 

By nesting the conditional expectation with 

respect to Zt within the unconditional expectation 

of Eq. (18), i.e., EE~]=EEEE~a/Zt]]  where 

EE'/Zt] denotes the expectation of ( ' )  condi- 

tioned on Zt, the cost criterion can be written as 

• l t /  - T  ~ 
]¢=|1m : -,Eff ::X OaX. 

t t - ~  ~ : - - ~  LJt a (19) 

+2~]N.u~ + u]R~u, + tr (Pa) ] drJ 
where ~ = E E ~ / Z t ]  is the conditional mean 

estimate of the state :~a and Pa is the conditional 

error covariance matrix with to xa. This cost 

criterion is now minimized subject to the estima- 

tion equations discussed below. Note that P~ 

does not depend on the control (see Eq. (23) 

below) and therefore, does not enter into the 

optimization process. 

The solution to the regulator problem (Kwa- 

kernaak and Silvan, 1969) is a compensator com- 

posed of a state reconstruction process, k~own 

here as a filter (in the no-noise case it is known 

as an observer) in cascade with a controller (see 

Fig. 2 where E;  is the estimator and C; is the 

, Lx=2n/~ .I 

l 
y 

Fig. 2 
m Actuators ~ Sensors 

Boundary layer flow equipped with distri- 
buted sensors and controllers. Ci and Ei rep- 
resent the controller and the estimator, re- 
spectively. Us, a', and 8, stand for the Blasius 
boundary layer velocity profile, the wavenum- 
ber, and the displacement thickness, respec- 
tively 
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controller).  The state estimate (conditional mean) 

z~a is governed by the so-called Kalman filter as 

x a = , ~ °  +~ou~+Lo~o, 
(20) 

~=~o ~ = ~  (~-~a)  + v ~  

If the reduced-order  system were the actual 

system, then v~ in Eq. (20) is correct. When the 

actual system is considered and the filter is 

implemented based on the reduced-state-space, z 

rather than ~ is the measurement and the filter 

residual becomes 

u. = z ~ - - ~ R , ~ - D . u ~  (21) 

The Kalman gain matrix L,a, constructed to 

trade the accuracy of the new measurements 

against the accuracy of the state propagated from 

the system dynamics, is given by 

L~=P.C~V; ~ (22) 

where P~ is the error covariance matrix in the 

statistical problem. 
In the infinite-time stationary formulation, the 

P~ is the solution to the algebraic Riccati equa- 

tion (ARE) ,  
A T  ^ T ^ T  - 1  ^ - -  ~P~+PaA~+F~W~Fd-P~C~V~ C~P~-O (23) 

If the system is (_~x~, Ca) observable and (A~, 

B~) controllable, then P~ is positive definite. 

Under these assumptions, it can be shown that the 

difference between the internal state ~ and the 

estimate state :~ ,  i.e., the error 

e~ =~.,~ --:~,~ (24) 

goes to zero as time goes to infinity. In other 

words, the evolution equation 

e~ = A y e ~  + l '~ u~ + / ~ a w ~  (25) 

is stable, i.e., all the eigenvalues of the matrix 

A.e =-&a -LaC,~  (26) 

have negative real parts. 
Minimizing the infinite-time cost function J ,  

Eq. (19) subject to Eq. (20) yields the following 

control law, 

t l u =  RaR,  (27) 

where 

K.,~ = R ~  ~ ( g r s ~  + N o )  (28) 
and S~ is the solution of the algebraic Riccati 

equation (ARE) 

.~.rS~ +S.) t .  +Qa - (SaB. +N~) R~ 1 (B.rS~ +N~ r) =0 (29) 

It should be remarked that the control gain 

matrix ~[~ is determined from functions only of 

the known dynamics coefficients (Aa.  B~) and 

the weighting in the cost criterion (Q~, Ra) ,  and 

not the statistics of the input (V~, Wa).  Conse- 

quently. Ka is determined from a performance 

index as Eq. (17), independent of the stochastic 

inputs. If (~xa, B~) is controllable and (fka. Q~t2) 

observable, then the loop coefficient matrix 

A c = A ~ - R ~ B ~  (30) 

is stable and S,~ is positive definite. The con- 

trollable and observable conditions can be wea- 

kened to be stabilizable and detectable (Kwaker- 

naak and Silvan, 1969). 

When we combine the estimator and the re- 

gulator together, the dynamic system composed of 

the controlled process and filter becomes 

Acl( o) ÷, Covo 
Note that any choice of  two between e, ~ ,  

and, :~a produces the same dynamics because they 

are algebraically related by Eq. (24). Under the 

above controllabili ty and observability assump- 

tions, A i  and Ac have only stable eigenvalues if 

optimal gains L~ and ~[~ of Eqs. (22) and (28) 

are used. If the actual linear system is used, then 

xa and the reduced-order  state estimate xa are 

used to form the closed-loop dynamic system 

rather than that given in Eq. (31). The eigen- 
values of the dynamical matrix now dictate the 

system stability and will differ from the ideal case 

of Eq. (31). 

The parameters used in our LQG design are 

now addressed. Since the power spectral density is 

not known, for simplicity of the design we con- 

sider V~ and W~ to be of the form V ~ = f l I  and 

W ~ = p I  where t3 and p are scalars and I is an 

identity matrix. Only the ratio of /3 and p is 

important. Furthermore, by choosing / - ' a : B ~ ,  
loop-transfer-recovery (LTR) of the LQG con- 

troller to full-state feedback (Zhou et al., 1996) 
guarantees that robust performance occurs when 

the process noise power spectral density goes to 
infinity, i.e., p---, ~ ,  provided there exists no 
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nonminimal-phase zero in the plant. In our case, 

there are no nonminimal-phase zeros. Robust 

performance means 60 ° of phase margin and at 

least 6 db of gain margin. Note that the choice of 

r~  =B~ implies that the noise is generated along 

the wall as is the control and could be interpreted 

as due to wall roughness. Furthermore, the values 

of p and W~ were determined by tuning the 

controller in the presence of nonlinear flow. The 

degree of loop transfer recovery varied from con- 

troller to controller. 

As described above using LQG/LTR assumes 

that the uncertainty is at the wall and affects the 

dynamics in the same way as the control. This is 

more physically motivated than the uncertainty 

structure assumed by Bewley and Liu (1998) 

where uncertainty is assumed uniformly through- 

out the channel. Furthermore, robustness in terms 

of traditional measures of gain and phase margins 

in control engineering are also obtained by using 

LQG/LTR.  For these reasons, the LQG/LTR is 

preferred over the unstructured uncertainty H¢o 

controllers. 

Figure 2 represents the boundary layer flow 

installed with distributed sensors and controllers 

by summarizing in a block diagram the control 

strategy described above. The computer program 

of two-dimensional distributed controller/sensor 

whose input is the matrix containing the gradients 

of the streamwise velocity component and whose 

output is the matrix containing the blowing and 

suction at the wall is embedded in our simulation 

program. The measured streamwise disturbance 

gradient is transformed to z~ 's by fast Fourier 

transform (FFT) .  Each single wavenumber con- 

troller is integrated in time by a third-order 

low-storage Runge-Kutta scheme to generate the 

input ua 's. An inverse FFT converts u a ' s  into 

real blowing/suction according to the last sum- 

mation term of Eq. (6). 

This real blowing/suction is distributed along 

the streamwise wall. 

3. Numer ica l  Method 

A two-dimensional parallel periodic boundary 

layer flow with a Blasius mean velocity profile 

(Us), given in Fig. 2, is taken as the model 

flow for our control study of transition. All 

variables are nondimensionalized with free stream 

velocity, Uoo, and the displacement thickness, 

~:~=f( l - -~ )dY.  Also, the Reynolds number 

is defined as Re~.--  Uoo~.. In our numerical sim- 

ulation, c~. and Ree. are kept constant, assuming 

the boundary layer thickness does not vary in 

the streamwise direction. The time-dependent 

incompressible N-S equations in a two-dimen- 

sional boundary layer flow are 

Oui Oui 0!) + 1 ~ u i  ~-g~i,h 
3t t- US 3X3 3X Res ,  Ox~Ox~ (32) 

i, j = l ,  2 

where ul and uz represent the streamwise and 

wall-normal velocities, respectively, and ~i,1 is the 

Kroneker delta function. 

1 dZU 
The forcing term, g, given by Re~, dy  z , is 

introduced so that the initial Blasius profile U8 

(y) is preserved in the simulation (Zang and 

Hussaini, 1985; Laurien and Kleiser, 1986). 

For the present study, uniform grid spacing is 

used in the streamwise direction, while nonuni-  

form grid spacing is adopted in the wall-normal 

direction. In order to generate the nonuniform 

grid spacing in the wall-normal direction, we use 

a transformation function defined by 

YmaxO'r] (33) 
y(z;) = 7]maxa+Yma×(7]m~x-- r]) 

where Ymax is the height of physical domain, r]max 

is the height of computational domain, and o 

is a constant that determines the concentration of 

grid-points near the wall. o" is chosen such that 

the numerical solution for small disturbance is 

matched with Linear Stability Theory (LST). 

For the spatial discretization of Eq. (32), the 

fourth-order compact finite difference scheme 

(Lele, 1992) is used on the staggered grid. 

For time advancement, we use a fractional step 

method suggested by Le and Moin(1991). The 

time integration is carried out with the 3 rd order 

Runge-Kutta (RK) scheme for the nonlinear 

term and 2 nd order Crank-Nicolson one for the 
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viscous term. The velocity field is t ime-advanced 

through each RK substep without satisfying con- 

tinuity. The velocities are projected onto the di- 

vergence-free field only at the last RK substep. In 

this paper, we use a modification of Le and Moin'  

s method, described by 

~i(,' l-~ '-~ a, a { az~,'-~l~ 

+#,L(ft!"-ft~ .'-x') - 7~V(u *l'-'l) (34) 

0P" ""-*( ' - "~ - ( a , + # , ) ~ S - , '  -~av tui J i=l, 2 

where ~ t )  denotes the intermediate velocity com- 

ponents (not satisfying the continuity equation) 

of each RK substep ; t2 *(° is the modified velo- 

city in the convective terms to maintain the order 

of accuracy of the scheme ; the superscript l ( =  1, 

2, 3) indicates the RK substep ; n represents the 

previous t ime;  L ( u i )  and N ( u i )  represent the 

4th-order  compact finite difference operators to 

approximate the viscous and convective terms, 

respectively. Note that the coefficients a~, /3e, 7 .  
and S't are constants such that the total time 

advancement between t n and t n+~ is th i rd-order  

accurate for the convective terms and second-or- 

der accurate for the viscous terms. The boundary 

condition of the intermediate velocity, ~!~), can be 

approximated by 

@(,°=u,".+~+O(At2), l = 1 ,  2, 3 (35) 

At the last RK substep ( / = 3 ) ,  Poisson equa- 

tion is obtained by enforcing the divergence-free 

constraint below : 

Oz~b _ 1 az~, s) (36) 
OXhOXh A t  3xk 

Once ~b is obtained, the divergence-free velocity 

components at time step n +  1 can be obtained 

from the relat ionship:  

z~? ) - A t  ~x~ (37) 

Poisson equation, Eq. (36), approximated with 
the 2nd-order  central difference method, is solved 

by a direct Poisson solver (Door, 1970; 1973; 

Kim and Moin, 1985; Schumann and Sweet, 

1988). In this paper, we use the Kim and Moin's 

algor.ithm (1985) incorporated with FFT.  

4. R e s u l t s  

Prior to a direct application of our controller to 

the boundary layer flow we consider as a plant, 

we have checked the validity of our order reduc- 

tion method. In this process, we performed the 

linear stability in the channel flow with R e =  1500 

and a = l . 0  and verified our order reduction 

method through the outputs in the full system 

(Eq. (10) :122 states) and the reduced-order  sys- 

tem (Eq. (12):12 states). Figure 3 shows that the 

both outputs are in excellent agreement. This 

backs it up that our order reduction is well 

carried out. 

We have designed a reduced-order  controller 

for two-dimensional  Poiseuille flow in a channel 

of Lx=4~r at Re=1500 with the grid resolution 

of  N = 3 2  and M = 6 0 .  We reduced the order of  

the controller by 90~o from 122 states of  the ful l-  

order system, Eq. (10), to 12 states of  the re- 

duced-order  system, Eq. (12), for each waven- 

umber. For  a numerical simulation, a finite dif- 

ference direct numerical simulation has been car- 

ried out. Two different instability cases have been 

selected for the s tudy:  linear Tollmien-Schli-  

chting instability and nonlinear disturbances in 

0.01 

0 , 0 0 8  

O,OO6 

0 . 0 0 4  

0 .002  

~-~ 0 

-O.O02 

- 0 . 0 0 4  

- 0 . 0 0 6  

- 0 . 0 0 8  

-0.01 

Fig. 3 

FuU system: z(l)  
. . . . . . .  Full sysl~rn: z(2) 

.,.."~ ~ o Reduced sysler~ z(I) 

~ %. • ROd~Cr.~ syslem: z(2) 

I i i I i i , i I , i , ~ I I , i , I i , , , 

1 2 3 4 5 
t 

Comparison of outputs between the full and 
reduced systems. Linear stability outputs in 

the channel f low at Re=1500 and a= l .0 .  
Symbols and lines represent the output 
behaviors of  the reduced-order and fal l-order 

systems, respectively 
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( c )  

Control of linear stability flow at Re~.=516 
and a=0.172: (a) The wall normal velocity 
compared with linear stability theory; (b) 
The comparison of disturbance wall-shear 
stresses at particular location between con- 
trolled and uncontrolled flows; (c) Com- 
parison of the streamwise eigenfunctions at 
t=120 between controlled and uncontrolled 
f l O W S  

the boundary layer flows. These selective tests 

will be served to give extensive robustness, in the 

sense of control performance, of the controller in 

the Blasius boundary layer flows. 

4.1 Control of two-dimensional tollmien- 
sehlichting wave 

For this case, we assumed the initial velocity 

field in the form of 

u(x ,  y, t = O ) = U n ( y ) + A m R e ( f i ( y ) e  ~x) (38) 

where fi(y) is the least stable or unstable eigen- 

function of Orr-Sommerfeld (O-S) solution for a 

given Rea, and wavenumber a, i is f~] - ,  and Am 

is an amplitude of linear disturbance. Note that 

fi(y) is normalized such that the maximum value 

of the streamwise eigenfunction becomes unity. 

We choose the simulation parameters Ree, = 

516 (which is equivalent to R g = I 5 0 0  used in 

the controller design) and a=0.172. From the 

linear stability theory, the least stable eigenvalue 

for the Blasius boundary layer flow is c0=0.604 - 

0.0045i. The initial disturbance amplitude is 

Am=0.0001. Although this disturbance will de- 

cay very slowly with the amplification rate of 

--0.0045, we can test the capability of the con- 

troller to suppress the wall-shear stress in the 

other basic plant than a Poiseuille channel flow 

from which the controller is designed. The com- 

2n" 
putational domain is given by - -  and 30a, in 

a 

the streamwise and wall-normal directions, re- 

spectively. 

To demonstrate the accuracy of our numerical 

method, we compared the results with linear sta- 

bility theory in Fig. 4(a). The wall-normal velo- 

city at a particular point in the uncontrolled flow 

is in excellent agreement with LST. Figure 4(b) 

shows a comparison of the disturbance wall- 

shear stresses in the controlled and uncontrolled 

flows. The disturbance wall-shear stress in the 

controlled flow decays even faster than in the 

uncontrolled flow due to the controller, accom- 

panying the short transient response as soon as 

the controller is on. It indicates that the closed- 

loop flow system equipped with our reduced-or- 

der controller has shifted the system pole of the 

uncontrolled flow system farther to the left hand 

side of complex plane like Joshi et al. (1997) 

showed. Figure 4(c) presents the comparison of 

the streamwise eigenfunctions in the controlled 

and uncontrolled flows at t =  120, indicating that 

the whole flow field is affected uniformly due to 

the blowing/suction at the wall. 

We applied our distributed reduced-order 

controller to another linear instability flow with 

Re~,=900 and a=0.25,  which gives an unstable 

disturbance with the amplification rate of 0.0026 
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and uncontrolled flows 
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Fig. 6 Contours of  the disturbance spanwise vorti- 

city at t = 1 0 :  (a) Uncontrolled flow; (b) 
Controlled flow; (c) Vwa. along the wall. 

Negative contours are dotted 

(w=0 .089+0 .0026) .  F igure  5(a) shows a com- 

parison o f  the disturbance wal l - shear  stresses in 

the control led and uncontrol led  flows. For  the 

uncontrol led flow, the disturbance wal l - shear  

stress is amplified with the theoretical  amplifica- 

tion rate. In the control led flow, however,  the 

disturbance wal l - shear  stress decays in time, with 

accompanying the short transient response in 

the very early stage of  control.  Figure  5(b) also 

shows the effect o f  the control ler  on the stre- 

amwise eigenfunction at t : 1 2 0 ,  which shows 

that the flow field is uniformly affected. It can be 

said that. for l inear disturbances,  our  two-d imen-  

sional l inear control ler  designed from a plane 

Poiseuil le channel  flow works robust ly against 

the Blasius boundary  layer flows with var ious 

Reynolds numbers. 

4.2 Control of nonlinear disturbance 

We tested our  control ler  in a two-d imens iona l  

nonl inear  Blasius boundary  layer flow at R e ~ . =  

516. For  an initial nonl inear  velocity field, we 

superpose the least stable eigenfunctions o f  O-S  

solut ion ranging from a1=0.172 to as=1.376.  

That  is, it is given by 

u(x, y, t=O)=UB(y)+Re(~__SlA,fl,(y)e~'"x ) (39) 

where disturbance ampli tude A ,  corresponding 

to wavenumber  an, which has a decreasing spec- 

trum in n, is chosen such that the initial disturb- 

ance velocity field has a maximum r o o t - m e a n -  

square (rms) of  U ~ s : 0 . 1 ,  i.e., 1 0 S  of  the free 

stream velocity. It will be shown later that its 

initial condi t ion  is enough to represent the no- 

nlinear behavior  of  the flow. Note  that the 

nonl inear  effect of  the initial velocity field is not 

at all taken to considerat ion in designing the 

distributed reduced-order  linear controller ,  so 

that it can not be directly controlled.  

Figures 6 and 7 show contours  o f  the disturb- 

ance spanwise vorticity in the control led and 

uncontrol led flows as well as b lowing / suc t ion  

applied at the wall at t : 1 0  and 20. In the 

uncontrol led flow at t :  10, the vort ical  structure 

outside the displacement thickness starts to take 

apart from one inside the displacement thickness. 
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Contours of the disturbance spanwise vorti- 
city at t=20 :  (a) Uncontrolled flow; (b) 
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Fig. 8 Contours of the disturbance spanwise vorti- 
city at t=200 : (a) Uncontrolled flow ; (b) 
Controlled flow; (c) vwaH along the wall. 
Negative contours are dotted 

Strong negative and positive vorticity Field inside 

the displacement thickness alternates far upstream 

and far downstream, respectively. At t=20 ,  the 

vortical structure outside the displacement thick- 

ness is getting isolated from one inside the dis- 

placement thickness. The strong positive and 

negative vortical structures are observed inside 

the half-displacement thickness. 

For the controlled flow at t=10 ,  the effect of 

the controller on the flow field is limited inside 

the displacement thickness. While the vortical 

structure outside the displacement thickness is 

changed little compared with the uncontrolled 

flow, the strength of the spanwise vorticity in- 

side the displacement thickness is weaken. Due to 

the nonlinear interaction with the blowing/suc- 

tion, moreover, small-valued-positive and-nega- 

tive vortices near the wall alternate downstream. 

Figure 6(c) shows that the controller produces 

strong blowing/suction upstream and weak one 

downstream, depending on the disturbance wall- 

shear measurement. At t=20 ,  the effect of the 

controller has penetrated into higher location 

than at t =  10. The vortical structure outside the 

displacement thickness is lifted to form an isolat- 

ed structure from one inside the displacement 

thickness. The spanwise vorticity near the wall is 

getting a bit larger than that at t=10 .  Also, the 

controller produces strong VwB~ over the wider 

upstream than at t =10. 

Figure 8 presents contours of the spanwise 

vorticity in the controlled and uncontrolled flows 

at t=200.  It shows the blowing/suction applied 

at the wall as well. In the uncontrolled flow, the 

vortical structure outside the displacement thick- 

ness is separated from one inside the displacement 

thickness. The vortical structure inside the dis: 

placement thickness is distributed more regularly. 

In the controlled flow, the flow field is much 

affected by the controller. In particular, the span- 

wise vorticity inside the displacement thickness is 

greatly reduced compared with that of the un- 

controlled flow. While the controller produces 

blowing velocity where the negative wall vorticity 

is detected, it generates suction velocity where the 

positive vorticity is observed. 

Figures 9 and 10 show not only the spanwise 

vorticity contours in the controlled and uncon- 
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t rol led flows, but  also the  b l o w i n g / s u c t i o n  ap- 

plied at the wall, respectively,  at t = 4 0 0  and  500. 
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T ime  [ S e c  ] 

Time evolution of disturbance wall-shear 

stresses at a given point in the controlled and 

uncontrolled ['lows: , uncontrolled 

flow ; . . . . .  , controlled flow 

In the uncon t ro l l ed  flow, the posi t ive and  nega- 

tive vor t ica l  s t ructures  a l te rna te  regular ly  a long  

the downs t r eam and  those s t rength  increases 

sl ightly because of  a n o n l i n e a r  effect as t ime goes 

on, ind ica t ing  that  the  resul t ing f low becomes  

unstable .  No te  tha t  the e igenfunct ions ,  fiin(Y) in 

Eq. (37),  are s table  for the l inear  d i s tu rbance  

with a given subcr i t ica l  Reynolds  number .  In the 

con t ro l l ed  flow, most  r ema in ing  vor t ical  struc- 

tures die out  due  to the  con t ro l l e r  as t ime goes on. 

The  effect of  the con t ro l l e r  penetra tes  into  the  

flow field far away from the b o u n d a r y  layer. The  

control ler ,  cor responding ly ,  p roduces  a lmost  zero 

b l o w i n g / s u c t i o n  velocity at the wall. 

The  t ime h is tory  of  the d i s tu rbance  w a l l - s h e a r  

stresses in the con t ro l l ed  and  uncon t ro l l ed  f lows 

is presented in Fig. 11. The  d i s tu rbance  wa l l -  

shear  stress is measured  at a given point .  After  

a cer ta in  t rans ien t  per iod,  the r e d u c e d - o r d e r  l ine- 

ar con t ro l l e r  suppresses  r e m a r k a b l y  the wall  

shear  stress even in the n o n l i n e a r  flow. It is 

interest ing to note  that  the s t eady-s ta te  response  

of  the  w a l l - s h e a r  stress in the uncon t ro l l ed  flow 

is ampl i f ied slowly. The  obse rva t ion  is very con-  

sistent  with  Figs. 6-10. 

Fo r  ident i f ica t ion  of  the effect of  each single 

w a v e n u m b e r  con t ro l l e r  on the  w a l l - s h e a r  stress, 

the t ime his tory of  the magn i tude  of  Four i e r  

coefficients of  the w a l l - s h e a r  stresses in the con-  
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(d) a4=0.688 

Time evolution of the magnitude of Fourier 

coefficient of wall-shear stresses in the 

uncontrolled and controlled flows: 

uncontrolled flow ; . . . . .  , controlled flow 

trolled and uncontrolled flows is plotted in Fig. 

12. The magnitude of  Fourier coefficients of the 

wall-shear stress, corresponding to 0tn:0.172, 

0.516, ..., 1.204, decreases with time, irrespective 

of the controlled or uncontrolled flows. The 

magnitude in the controlled flow is though, in 

general, decayed more rapidly compared with that 

in the uncontrolled flow. For the components 

corresponding to an:0 .344,  0.688 ..... 1.376 in the 

uncontrolled flow, the magnitudes increase slowly 

with time later than /=150 ,  leading to a flow 

instability. It demonstrates that the initial condi- 

tion is really nonlinear since all these components 

should die out at this subcritical Reynolds num- 

ber if it is linear. These corresponding com- 

ponents in the controlled flow are, however, 

highly reduced in time to decay out. It is dem- 
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Comparison of the viscous drag measured at 

the wall : ......... , laminar Blasius boundary 

layer flow; , uncontrolled flow ; 

- -o-- ,  controlled flow 

onstrated that the linear reduced-order controller 

is working robustly against the finite amplitude 

disturbances in a different basic plant other than 

a plane Poiseuille channel flow. 

For the estimation of control performance, we 

measured the total viscous drag acting on the wall 

by averaging the viscous wall-shear stress over 

the downstream. The viscous drags in the Blasius 

boundary layer flow without disturbances, the 

uncontrolled flow, and the controlled flow are 

compared in Fig. 13. In the uncontrolled flow, the 

drag increases rapidly in the early simulation and 

then is getting to decrease gradually. However, 

after t >300, the drag increases slowly due to the 

unstable disturbances observed in Figs. 6-12. In 

the controlled flow, the drag undergoes the tran- 

sient phenomena in the beginning of control, 

followed by the gradual increase. Nonetheless, it 

decreases down less than that of the laminar 

Blasius flow. In the long run, it recovers the 

laminar Blasius drag. 

5. Conclusion 

In this paper, we successfully control the tran- 

sition in the Blasius boundary layer flow via the 

reduced-order linear controller. First, we applied 

the distributed reduced-order two-dimensional 

controller, which is designed from the linearized 

Navier-Stokes equations in a Poiseuille channel 

flow, to the linear two-dimensional boundary 

layer flows with two different Reynolds numbers 

(Re~.--516 and 900). This controller not only 

works, but also is robust with respect to the 

Reynolds number uncertainty even in the other 
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basic plant than the Poiseuille flow. 

Second, we applied our reduced-order  control- 

ler to a two-dimensional  boundary layer flow 

with finite amplitude disturbances at Ree ,=516.  

We successfully suppress the nonlinear distur- 

bances, which otherwise undergo instability, and 

recover the laminar Blasius boundary layer flow. 

A small gain in the viscous drag is obtained 

compared with the uncontrolled flow. Extension 

of H2 to the boundary layer flow is in progress. 
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